AI Workflow: Data Analysis and Hypothesis Testing
1.符合資格者將於出貨後三個工作日陸續發送交易訊息通知。2.點數將於廠商出貨後,隔天起算110天後陸續確認發送。3.國際商家之商品金額及回饋點數依據將以商品未稅價格為準。4.國際商家之商品金額可能受匯率影響而有微幅差異。5.禮品卡支付以及使用未授權優惠碼不符合贈點資格。6.點數發送依據及返點上限將以「訂單總金額」計算(不含運費及稅額),不論訂單中有多少商品,於LINE購物皆視為只購買一商品(金額為當筆訂單所有商品加總金額),亦即點數回饋計算並非以coursera實際購買商品數量拆分計算 。7. 同6說明,訂單完成後的顯示金額可能包含部分運費或稅金,可返點金額將以系統回傳金額為準 8.若於商家App下單,不符合LINE購物導購資格。
商品描述
This is the second course in the IBM AI Enterprise Workflow Certification specialization. You are STRONGLY encouraged to complete these courses in order as they are not individual independent courses, but part of a workflow where each course builds on the previous ones. In this course you will begin your work for a hypothetical streaming media company by doing exploratory data analysis (EDA). Best practices for data visualization, handling missing data, and hypothesis testing will be introduced to you as part of your work. You will learn techniques of estimation with probability distributions and extending these estimates to apply null hypothesis significance tests. You will apply what you learn through two hands on case studies: data visualization and multiple testing using a simple pipeline. By the end of this course you should be able to: 1. List several best practices concerning EDA and data visualization 2. Create a simple dashboard in Watson Studio 3. Describe strategies for dealing with missing data 4. Explain the difference between imputation and multiple imputation 5. Employ common distributions to answer questions about event probabilities 6. Explain the investigative role of hypothesis testing in EDA 7. Apply several methods for dealing with multiple testing Who should take this course? This course targets existing data science practitioners that have expertise building machine learning models, who want to deepen their skills on building and deploying AI in large enterprises. If you are an aspiring Data Scientist, this course is NOT for you as you need real world expertise to benefit from the content of these courses. What skills should you have? It is assumed that you have completed Course 1 of the IBM AI Enterprise Workflow specialization and have a solid understanding of the following topics prior to starting this course: Fundamental understanding of Linear Algebra; Understand sampling, probability theory, and probability distributions; Knowledge of descriptive and inferential statistical concepts; General understanding of machine learning techniques and best practices; Practiced understanding of Python and the packages commonly used in data science: NumPy, Pandas, matplotlib, scikit-learn; Familiarity with IBM Watson Studio; Familiarity with the design thinking process.